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The complete integrability of the plane problem of the motion of a rigid body in a resisting medium under jet flow conditions 
is shown, when one first integral, which is transcendental function of the quasi-velocities (in the sense of the theory of functions 
of a complex variable having essentially singular points), exists in the system of dynamic equations. It is assumed that all the 
interaction of the medium with the body is concentrated in that part of the surface of the body which has the form of a (one- 
dimensional) plate. The plane problem is extended to the three-dimensional case; then a complete set of first integrals exists in 
the system of dynamic equations: one analytic, one meromorphic and one transcendental. It is assumed here that all the interaction 
of the medium with the body is concentrated in that part of the surface of the body which has the form of a plane (two-dimensional) 
disc. An attempt is also made to construct an extension of the "low-dimensional" cases to the dynamics of a so-called four- 
dimensional rigid body, interacting with a medium which is concentrated in that part of the (three-dimensional) surface of the 
body which has the form of a (three-dimensional) sphere. The vector of the angular velocity of the motion of such a body in this 
case is six-dimensional, while the velocity of the centre of mass is four-dimensional. �9 2006 Elsevier Ltd. All rights reserved. 

1. F U N D A M E N T A L  H Y P O T H E S E S  A N D  F O R M U L A T I O N  O F  
T H E  P R O B L E M  

According to the hypothesis of quasi-stationarity [1, 2], in the interaction of a body with a medium under 
jet-flow conditions the generalized forces depend only on the generalized coordinates and the generalized 
velocities. Below we distinguish a class of problems for which the generalized forces depend only on 
the generalized velocities. 

We will assume that a homogeneous rigid body of mass m freely performs plane-parallel motion in 
a medium which is at rest at infinity, and that a certain part of the outer surface of the body is a finite 
plane region (a plate) P, under conditions of jet flow of the medium [1, 2], and perpendicular to the 
plane of motion O~rl, which contains the centre of mass C of a body. The region P intersects the plane 
O~q along a sectionAB of length A (Fig. 1). The remaining part of the body surface is arranged inside 
the volume, bounded by the surface of the liquid, which is separated from the edge of the plate, and 
does not experience the action of the medium. Such conditions may arise, for example, after a body 
enters water [3, 4]. Hence, we will assume that all the interaction of the medium with the body is 
concentrated on that part of the surface of the body which has the form of a (one-dimensional) plate. 

In view of the properties of jet flow, the action of the medium on the plate reduces to a force S, the 
line of action of which is orthogonal to the region P, i.e. S does not change its direction with respect 
to the body. 

We will connect a right system of coordinates Dxyz to the body, the z axis of which moves parallel to 
itself, and we will assume, for simplicity, that Dzx is the plane of geometrical symmetry of the body. 

We will consider the mode of rectilinear progressive retardation. This mode is possible when the 
following two conditions are satisfied: (1) the velocity of the body is orthogonal to the sectionAB, and 
(2) the perpendicular, dropped from the centre of gravity C of the body to the plane of the plate, pertains 
to the line of action of the force S. 

tPrikl. Mat. Mekh. Vol. 69, No. 6, pp. 1003-1010, 2005. 
0021-8928/S--see front matter. �9 2006 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.11.012 
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When this mode is disturbed, the velocity vector of the point D, generally speaking, deviates from 
the straight line Dx by an angle of attack ix. Then the point N of application of the force S is shifted 
along the plate A B  by an amount YN. The position of the body on the plane will be defined by the 
generalized coordinates D = ({, 11) and the angle q0 between the straight line CD and the { axis. 

We can now write the equations of motion of the centre of mass of the body in a projection onto the 
and 11 axes, and the equation of the change in the angular momentum about the Koenig axis. 
Introducing the quasi-velocities I~1 -- ~, ~ instead of the velocities ~', ~" and the angular velocity 

fL as given by the formulae 

~" = vcos ( tx+9) ,  11" = v s i n ( a +  q~), 9" = f~ (1.1) 

and assuming that 

S = SI1) 2, 81 = Sl(Ot ' to)>O' YN = YN(~ ' tg ) '  tO = f~AIo 

the equations of motion of the centre of mass in projections onto the Dx and Dy axes and the equation 
of the change in angular momentum can be written in the following form (compare with the equations 
proposed previously in [5]) 

o'cost~ - tx' osin~ - f~osin~ + ~f i  2 = - $ 1 ( ~  , t.O) O2m - l  sign cos~ 

o ' s i n a +  t ~ ' o c o s a + f i o c o s t x - o f l "  = 0 

I t )"  = YN(O~, tO)Sl(t~, t o )vEs igncos t~  

(1.2) 

(o  = CD and I is the central moment of inertia). 
The system obtained is also regarded as an independent third-order system, and to obtain the 

trajectories of the rigid body in the plane it is necessary to supplement this system by the kinematic 
relations (1.1). 

2. C L A S S E S  OF D Y N A M I C  F U N C T I O N S  

It is difficult to obtain an explicit form of the pair of functions (YN, S1) for each specific body. Hence, 
it is sufficient to extend the class of functions {YN} and {sl},  so that they necessarily include pairs of 
"real" functions. To do this it is necessary to extend the functions YN and sl to finite angles of attack, 
i.e. "broaden" the regions in which this pair of dynamic functions is defined in the interval (0, n/2). 
However, in fact, one must consider them over the whole number axis, as was done by Chaplygin [6], 
which, for an infinite strip, enables one to obtain these functions analytically. 

We will consider the case when the pair of dynamic functions (YN, Sl) depends only on the angle of 
attack (i.e. YN = yN(~), Sl = Sl(a)), in which case, to describe it qualitatively, one uses experimental 
data on the properties of jet flow [7].t We will introduce a sign-variable auxiliary function s(o 0 = 

t See also: SAMSONOV, V. A. and SHAMOLIN, M. V., A model problem on the motion of a body in a medium with a jet flow. 
Report of the Institute of Mechanics, Moscow State University, No. 3969, 1990. 
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sl(a) sign cos Ix, which takes into account the sign of the projection of drag force onto the Dx axis. The 
classes of functions introduced are fairly wide and consist of fairly smooth, 2re-periodic functions of the 
following form: yN(a) is an odd function and s(ix) is an even function, which satisfy the following 
conditions: YN(IX) > 0 when a ~ (0, rt), and y~r > 0, yjv(r 0 < 0 (the class of functions {YN} = Y); 
s(ix) > 0 when Ix ~ (0, ~/2) and s(ix) < 0 when Ix ~ (g/2, r0, when s(0) > 0, s'(=/2) < 0 (the class of 
functions {s} = ]~). Both functions change sign when Ix is replaced by Ix + re. N particular, the following 
analytical functions (corresponding exactly to the Chaplygin case [6]) serve as typical representatives 
of the classes described above 

YNo(a) = As ina~  Y, So(ix) = B c o s a ~  X; A , B > O  (2.1) 

3. M O T I O N  W H E N  T H E R E  IS A F O L L O W E R  F O R C E  AND A SYSTEM 
W I T H  V A R I A B L E  D I S S I P A T I O N  " W I T H  Z E R O  M E A N "  

We will distinguish further a class of problems on the motion of a body in a medium when, in addition 
to the action of the medium on the body, a certain follower force (a thrust) T is applied to the body 
along the straight line DC. One of these problems was solved in [8] for a constant thrust. 

We will assume that the following equality is satisfied at all instants of time 

This is possible if 

1) = const (3.1) 

ITJ = T = mty~ 2 + 1 ) 2 [ s ( a ) - m o F I F ( a ) t g a ]  

System (1.2), under certain conditions [5], can then be reduced to the system 

a" = - f~ + A i F ( a ) / c o s a ,  

F(a) = yN(a)s(a)  

~" = A2F(a); A l = t~oll, A 2 = 1~21I, 
(3.2) 

which is equivalent to the equation of a non-linear oscillator 

IX'" - AIIX'F(IX)Icosix + A2F(IX ) = 0 (3.3) 

It can be seen that the motion of the system occurs due to the action of two forces: a conservative 
force A2F(IX) and a force that is linear in the velocity or with a variable coefficient d(F(ix)/cos Ix/dix, 
which changes sign on transferring from one strip of the phase cylinder to another. We therefore have 
a system with a so-called variable dissipation (in the sense of the sign). It is obvious that in this case 
the dissipation vanishes on average over a period of 2re of the angle of attack. Hence, we will say that 
system (3.2) (or Eq. (3.3)) is a system (or an equation) with variable dissipation with zero mean. 

4. THE I N T E G R A B I L I T Y  OF SYSTEMS IN T R A N S C E N D E N T A L  
F U N C T I O N S  

We will make an assertion connecting the behaviour of the trajectories near asymptotic limiting sets 
and the integrability of the system. Repulsive and attractive limiting set will be called asymptotic limiting 
sets. 

Consider a system of equations in the phase space R n. 

Theorem 1. If a system possesses asymptotic limiting sets, it does not have a complete set of continuous 
first integrals in the whole of phase space. 

This theorem, although it can be proved fairly simply, has an important topological meaning, which 
touches on the continuity of the first integrals near limiting sets. 

Corollary. From the point of view of the theory of functions, the first integrals can have essentially 
singular points in these asymptotic limiting sets. 

System (3.2) has equilibrium positions (nk, 0) (k ~ Z), which are repulsive when k = 2n (n ~ Z) and 
are attractive when k = 2n + 1. 
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Proposition. System (3.2) possesses a transcendental first integral [5, 8]. 
The required first integral in case (2.1) has the following form (three cases are possible depending 

on the sign of A = A 2 - 4A2): 

�9 2 . . f 2A1 2f~ + A l s intx~ 
A<0:  [f~2+Alflsintz+,aEsin txlsm~----~arctg ~ j = const  

, > 0  , , ,+  = ,oost(, ,  i , o  + A, �9  sinof 

A = 0: 12f~+Ansin~lexp 2f~+Alsincz) = const 

Corollary. When A1 = 0 the transcendental first integral (transcendental in the sense of the theory 
of functions of a complex variable), is converted into an analytical first integral for the standard equation 
of a mathematical pendulum. 

5. F O R M U L A T I O N  OF T H E  T H R E E - D I M E N S I O N A L  P R O B L E M  OF 
THE M O T I O N  OF A BODY IN A R E S I S T I N G  M E D I U M  U N D E R  

Q U A S I - S T A T I O N A R I T Y  C O N D I T I O N S  

The dynamic model of the interaction of a rigid body with a resisting medium in the case of jet flow 
[1, 2] under quasi-stationarity conditions considered below not only enables one to extend the results 
of the corresponding problem of the plane-parallel motion of a body, interacting with the medium [3-8], 
and to obtain their three-dimensional analogues, but also enables one to obtain new cases that are Jacobi 
integrable. Sometimes the integrals are expressed in terms of elementary functions. Below we will show 
the integrability of the problem of the three-dimensional motion of a body when there is a servo 
constraint of the form (3.1) 

We will assume that a homogeneous axisymmetrical rigid body of mass m performs three-dimensional 
motion in a medium and that a certain part of the body surface is in the form of a plane disc, which is 
under conditions of jet flow of the medium. The remaining part of the body surface does not interact 
with the medium. As in the case of plane-parallel motion, the force S with which the medium acts on 
the body is orthogonal to the plane of the disc. All similar assumptions of a model form in this case 
are real and are transferred from plane dynamics (Fig. 2). hence, it is assumed that all the interaction 
of the medium with the body is concentrated on that part of the body surface which has the form of a 
plane (two-dimensional) disc. 

Further, we mention the changes in the formulation which are characteristic for the three-dimensional 
case. If we contact a system of coordinates Dxyz with the body so that the Dx axis is directed along the 
axis of geometrical symmetry of the body, while the Dy and Dz axes lie in the plane of the disc, the 
position of the body in space will be defined by three Cartesian coordinate ~, 11, ~ of the point D and 
three angles 0, ~, cp. In dynamical space we now have as the quasi-velocities the quantities (~, cx, [3) - 
the spherical coordinates of the vector v of the velocity of the point D (cz is the angle of attack, and the 
angle 13 is measured in the plane of the disc), and also (f~x, D.y, f2z) are the projections of the angular 
velocity on the associated axes Dxyz. 
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The system of dynamic equations in six-dimensional dynamic space has the form 

v" coscX - cx" osincx + f~yUSino~sin ~ - ~z usincxcos 13 2 + O(~y + ~2) = _s(oOm-i D2 

U" sincxcos ~ + CX" 1)COS(XCOS [3 -- I]" vsinasin ~ + 

+ f~zUCOSC~ - f~xvsincxsinl] - I~-'~x~'~y - (Y~"~ = 0 

u" sinasinl] + ~" ucosasin[3 + ~" vsinacos[3 + (5.1) 

+ Dxusin~xcosl3 - ~~y'OCOSO~ - I ~ x ~ ~  z + o~'~y • 0 

llf]~ + (13 - 12)~2y~'~ z = O, I2~y + (I n - 13)~xD z = --ZNS(~)I) 2, 

13~"2z + (12 - ll)~'~x~'~y = YNS(O0 1)2 

In addition to the function s((z) the system also contains the functions YN and ZN (0, YN and ZN are 
the coordinates of the point N in the system Dxyz), defined in terms of the dynamic function R as follows: 

yN(~, [3) = R((X)cosl], ZN( (x, 13) = R((x)sin~ 

We will construct the three-dimensional version of the motion of the body in case (3.1) and we will 
investigate it under the conditions R e u s e Z. 

In a twelfth-order general dynamical system, by virtue of the cyclicity of these coordinates, splitting 
of the independent subsystem (5.1) in six-dimensional dynamic phase space of the quasi-velocities 
T2{(Z,  ~}  • RI{~o} x R 3 { ~ x ,  D.y, ~2z} o c c u r s .  

The moment of the drag force, as before, is represented in a form that is quadratic in the velocity: 
M = F(cz)x) 2, in which the function F(~)  = R(ct)s(~) appears (see (3.2)), for a qualitative description 
of which we will use existing experimental information on the properties of jet flow. 

6. A D Y N A M I C A L L Y  S Y M M E T R I C A L  F R E E  R I G I D  B O D Y  W I T H  
A S E R V O  C O N S T R A I N T  

The equations of motion of a dynamically symmetrical free rigid body (12 = 13; 11, 12 and 13 are the 
principal moment of inertia) in Dxyz axes when there is a servo constraint of the form (3.1) [5] (for 
plane version of this problem see above) allow of the first integral f~x = f2x0 and have the following 
form (for simplicity we assume f~x0 = 0) 

O~ _Z_+121F(oOoo/cosO~, Z- = -1 2 2 �9 = 12 F(O01) -Z+ctgCx, Z~ = Z+Z_ctgCX (6.1) 

6" = z+ctgcx (6.2) 

Here ~ = CD, C is the centre of mass and z+ = fly cos [3 ___ ~z sin [~. 
Assertion. Dynamical system (6.1), (6.2) is topologically equivalent to system (6.1), (6.2) with condition 

(2.1), i.e. when 

F = F0(a ) = F~ F ~ 0 (6.3) 

When condition (6.3) is satisfied, Eq. (6.2) keeps its form, while system (6.1) takes the form 

�9 2 2 2 �9 2 �9 2 
= - z  + O n o u s i n a ,  z"  = _ = ( 6 . 4 )  _ n01~ sm(xcos~-z+ctg(x, z+ = z§ ctg(x (n o F 0 1 2  l )  

We will estimate the possibilities of complete integration of system (6.4), (6.2). Below we will present 
the first integrals of the system, which are expressed in terms of elementary functions. 

Theorem 2. System (6.4) possesses a complete set of transcendental first integrals. System (6.4), (6.2) 
is also completely Jacobi integrable, and its first two integrals are the first integrals of system (6.4). 
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The meromorphic integral of system (6.4) has the form 

2 2 2 2 2 . .  _ 
(z 2 +z_-anoVz_X+noU "c )/z+'~ = C 1, ~ = sintx (6.5) 

Since system (6.4) possess variable dissipation and is analytic, we can obtain two other additional 
integrals for it in explicit form. By virtue of Eq. (6.5) the following identity is satisfied 

4[u 2 2 2 u, (C l +G) /2 ;  G dC~ = = - - - O ' n 0 1 ) u _ + n 0 1 )  ] ,  u+ = Z+I; (6.6) 

Then, in view of Eqs (6.4) and (6.6) the quadrature for finding the desired integral, which connects 
the quantities u_ and x, takes the form 

2 

D I - D  2, D, = ( Y + C 1 ) J C 2 - y  2+4a JY2~ :G (6.7) 

2 2 2 2  2 2  
y2 = C ~ - 4 ( x - a ) ,  x = (u_-Ono/2)  , a = noVA2/4,  A 2 = o n o - 4  

Suppose, to be specific that C 2 + 4a > 0. Then 

1 Cly + C~ + 2not~,fa 
D I = + _ _  a r c s i n  + C 2, if A 2 < 0 

2nov~-a  (y + C,),fC~ + 2noO,4ra 

D, = ~ ( C l y + C ~ ) - I ~ + C 2 ,  if A 2 = 0 

1 In 2"f~:t:G' + CI /, 
D, = :F(~+ + ~ _ ) + C  2 ~ + = 4 n o ~  a ~ 2,fa ) if A2>0 

Reverting to the old variables, it can be shown that the additional first integral has the following 
structural form (analogous to the transcendental first integral corresponding to the case of the plane- 
parallel motion of the body (compare with the case considered earlier in [5])) 

lnlsintx[ + G2(z_sintx, z+sintx, sintx) = C 2 

The additional integral of the system obtain above, which is transcendental function of the phase 
variables, is, together with the integral (6.5), a complete set of first integrals of system (6.4). For the 
complete system (6.4), (6.2) with f~0 = 0, one more first integral is required. 

To find the additional integral of system (6.4), (6.2) we note that since dz+/d~ = z, we have 
du+/d[5 + I--u_ + 6n2"o] = u_. Hence 

+ / 2 4 2  . .  2 2 2  
du+/d~ = _4t~ noO - 4 [ u + -  Clu + + not) ] 

and, consequently, the following equality is satisfied 

2 
COS [2 (~+C3)  ] G31(u_ 2 2 2 = - t~no/2 ) u§ 

where 

r 2 2 2 2[u2§ 2 2 2 2 2 2 .  2 2 4 2 2 
G 3 [u+-  (yn 0 l)u+j + - _ _ = tYnoVu+][u_+nol) ] + [ u 2 + n o  11 J +t~ nod u 

7. T H E  T R A N S I T I O N  TO T H E  F O U R - D I M E N S I O N A L  CASE 

The structure of the dynamic equations of motion are often preserved when the dynamic properties 
are transferred to the case of higher dimensions. For example, a theory of the motion of a four-dimensional 
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(or even an n-dimensional) rigid body has recently been developed [9-1]; the Hamiltonian nature of 
the equations of motion of a multidimensional rigid body has been shown in certain cases. It is interesting 
to investigate the motion of a so-called four-dimensional rigid body, which interacts with a "resisting 
medium" in accordance with the laws of "jet flow". In the latter case it is assumed that all the interaction 
of the (four-dimensional) rigid body with the medium is concentrated on part of the (three-dimensional) 
surface of the body, which has the form of a (three-dimensional) sphere. Then the vector of the angular 
velocity of motion of such a body is six-dimensional, and the velocity of the centre of mass is four- 
dimensional. 

R e m a r k .  Previously (in fundamental geometries) only those motions of a four-dimensional body were 
considered when the moment of the external forces is equal to zero. We are developing a new technique 
for investigating the equations of motion of a rigid body in the set so(4) x R 4 when the moment of the 
external forces is non-zero. 

The procedure for integrating the dynamical systems considered can nearly always be extended to 
s o ( n )  • R n space of the dynamic equations of an arbitrary dynamically symmetrical n-dimensional rigid 
body. 
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